skip to main content


Search for: All records

Creators/Authors contains: "Cowan, Elizabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Mobile devices are becoming a more common part of the education experience. Students can access their devices at any time to perform assignments or review material. Mobile apps can have the added advantage of being able to automatically grade student work and provide instantaneous feedback. However, numerous challenges remain in implementing effective mobile educational apps. One challenge is the small screen size of smartphones, which was a concern for a spatial visualization training app where students sketch isometric and orthographic drawings. This app was originally developed for iPads, but the wide prevalence of smartphones led to porting the software to iPhone and Android phones. The sketching assignments on a smartphone screen required more frequent zooming and panning, and one of the hypotheses of this study was that the educational effectiveness on smartphones was the same as on the larger screen sizes using iPad tablets. The spatial visualization mobile sketching app was implemented in a college freshman engineering graphics course to teach students how to sketch orthographic and isometric assignments. The app provides automatic grading and hint feedback to help students when they are stuck. Students in this pilot were assigned sketching problems as homework using their personal devices. Students were administered a pre- and post- spatial visualization test (PSVT-R, a reliable, well-validated instrument) to assess learning gains. The trial analysis focuses on students who entered the course with limited spatial visualization experience as identified based on a score of ≤70% on the PSVT:R since students entering college with low PSVT:R scores are at higher risk of dropping out of STEM majors. Among these low-performing students, those who used the app showed significant progress: (71%) raised their test scores above 70% bringing them out of the at-risk range for dropping out of engineering. While the PSVT:R test has been well validated, there are benefits to developing alternative methods of assessing spatial visualization skills. We developed an assembly pre- and post- test based upon a timed Lego™ exercise. At the start of the quarter, students were timed to see how long it would take them to build small lego sets using only visual instructions. Students were timed again on a different lego set after completion of the spatial visualization app. One benefit of the test was that it illustrated to the engineering students a skill that could be perceived as more relevant to their careers, and thus possibly increased their motivation for spatial visualization training. In addition, it may be possible to adapt the assembly test to elementary school grade levels where the PSVT:R test would not be suitable. Preliminary results show that the average lego build times decreased significantly after using the mobile app, indicating an improvement in students’ spatial reasoning skills. A comparison will also be done between normalized completion times on the assembly test and the PSVT:R tests in order to see how the assembly test compares to the “gold standard”. In addition to the PSVT-R instrument, a survey was conducted to evaluate student usage and their impressions of the app. Students found the app engaging, easy to use, and something they would do whenever they had “a free moment”. 95% of the students recommended the app to a friend if they are struggling with spatial visualization skills. This paper will describe the implementation of the mobile spatial visualization sketching app in a large college classroom, and highlight the app’s impact in increasing self-efficacy in spatial visualization and sketching 
    more » « less
  3. null (Ed.)
    The pedagogical approach of Zone of Proximal Development (ZPD) is based on the belief that effective learning occurs when students are challenged just beyond the level they can do on their own. An expert teacher looking over the shoulder of a student would give just the right amount of hints; too much hinting gives away the solution which deprives the student of the productive struggle that is needed for learning new concepts. Alternatively, no hinting may leave the student frustrated to the point where they give up. A key challenge with online learning is how to provide the right level of hints as if an expert teacher were there. This paper describes the evolution of hints for spatial visualization training using a mobile app. Students sketch orthographic and isometric sketches, which are automatically graded by the app. When a student draws an assignment incorrectly, they are provided with the option of a hint or peeking at the solution. This paper discusses the development of the app feedback and how it has impacted student behavior in using the app. In a first implementation, some students who excessively peeked at the solution without trying very hard on the assignments, did not significantly improve their spatial visualization ability as measured by the standardized PSVT:R test. To address the over-use of peeking, gamification was added that rewarded students to try on their own before looking at a hint or peek. In this paper, we look at a classroom trial that used a version of the spatial visualization mobile app with gamification. In general, gamification increased the post PSVT:r test scores. However, there was also a partial negative effect that and we see instances where the gamification lead to student frustration and waste of time because they avoided using hints to maximize their gamification points. We realized that the encompassing the knowledge of an expert teacher in providing hints just when needed, is difficult to implement in an algorithm. Specific examples are presented along with proposed improvements to the in-app hints. The final paper will include data comparing results of a class in January 2018 that used the original hints, with a class in January 2019 that will use the newer hints. 
    more » « less
  4. null (Ed.)
    This Research to Practice work-in-progress paper examines the impact of eGrove Education’s Spatial Vis touchscreen application for teaching spatial visualization. Research has shown that competency with spatial visualization is correlated with success in engineering, but few engineering programs explicitly teach this skill. In this paper, we describe a controlled trial (n=55) in which the app was assigned as homework for the experimental group, but no additional lecture time was dedicated to spatial visualization training. Our analysis focuses on students who entered the course with limited spatial visualization experience as identified based on a score of ≤70% on the PSVT:R (a reliable, well-validated instrument). Among these low- performing students, those who used the app showed remarkable progress – 8 of 13 (62%) raised their test scores above 70% compared to just 2 of 14 (14%) in the control group. Students in both the experimental and control groups showed statistically significant increases between the pre- and post-test scores (paired t-test), though the difference in the gains between the two groups was statistically insignificant as the study was underpowered. While larger trials will be needed, this work suggests that the Spatial Vis app is a promising intervention for training spatial visualization skills. 
    more » « less
  5. Spatial visualization is the cognitive ability of mentally representing and manipulating two-dimensional and three-dimensional figures. This is a learnable cognitive skill that has been correlated with increased GPA’s and retention in science, technology, engineering, and math (S TEM) disciplines [ Sorby, 2009]. Traditional spatial visualization training includes freehand sketching assignments, which require human grading. A spatial visualization training application (app) was developed in which students freehand sketch on a touchscreen and an automatic grading algorithm provides immediate feedback. In spring 2014, the App was used with iPads in a one-unit spatial visualization course where students took pre and post spatial visualization assessment tests. In 2014, 46% of the students who scored low on the pre-assessment had a significant improvement of 10% or more on the post-assessment. This paper describes how the App was modified to increase student gains: feedback to the user was changed to motivate increased persistence; new assignments were developed, taking advantage of color and cues that are not present in traditional paper based sketching assignments; and assignments were modified to address common errors. The course was taught with the new user interface in 2017, during which 82% of incoming students with low spatial skills showed significant improvement. The increase from 46% to 82% is attributed to the capability of pen and touch technology to be adapted effectively for educational purposes. 
    more » « less